데이터 분석1 데이터 분석에서의 인과관계와 상관분석: 무엇이 다를까? 데이터 분석에서 인과관계와 상관분석은 중요한 개념이지만 종종 혼동될 수 있습니다. 이 블로그 글에서는 이 두 가지 개념을 설명하고, 그 차이와 활용 사례에 대해 알아보겠습니다. 인과관계 (Causality): 인과관계는 원인과 결과 간의 관계를 의미합니다. 즉, 한 사건이 다른 사건을 일으킨다고 확신할 수 있는 경우를 나타냅니다. 인과관계를 확인하기 위해 실험적인 연구 디자인이 필요할 수 있으며, 이를 통해 원인과 결과 사이의 인과 메커니즘을 밝힐 수 있습니다. 예를 들어, 의학 연구에서 특정 약물이 병을 치료하는 효과가 있는지를 확인하기 위해 무작위 대조실험이 수행됩니다. 이를 통해 약물과 치료 효과 간의 인과관계를 확인할 수 있습니다. 상관분석 (Correlation Analysis): 상관분석은 두.. 2023. 9. 11. 이전 1 다음