밀집형(dense) 표현1 자연어 처리(NLP)에서의 임베딩(Embedding) 자연어 처리(NLP)에서의 "임베딩(Embedding)"은 단어나 문장을 수치적인 벡터로 표현하는 기술입니다. 이는 기계 학습 모델에 텍스트 데이터를 입력하기 위해 사용됩니다. 임베딩은 단어나 문장을 밀집형(dense) 벡터로 변환하여 컴퓨터가 이해할 수 있는 형태로 변환합니다. 임베딩의 주요 특징: 1. 단어 임베딩(Word Embedding): 각 단어를 고정된 길이의 실수 벡터로 매핑합니다. 이러한 단어 임베딩은 단어 사이의 의미적, 문법적 유사성을 캡처하여 벡터 공간에서 단어 간 관계를 보존합니다. 2. 벡터 표현: 임베딩된 벡터는 특정 단어의 의미와 관련된 정보를 포함하며, 이를 통해 단어 간 유사성을 측정하거나 다른 작업에 활용할 수 있습니다. 3. 밀집형(dense) 표현: 임베딩된 벡터는 .. 2023. 12. 15. 이전 1 다음