의사결정나무(Decision Tree)의 다양한 활용
의사결정나무는 다양한 분야에서 활용될 수 있는 강력한 도구로, 세분화, 분류, 예측, 차원 축소, 교호작용 및 변수 선택, 그리고 범주 병합 또는 연속형 변수의 이산화 등 다양한 목적으로 사용됩니다. 1. 세분화 (Segmentation): 의사결정나무는 데이터를 서로 다른 그룹 또는 세그먼트로 나누는 데 사용됩니다. 이를 통해 고객, 제품, 지역 등을 기반으로 세분화된 마케팅 전략을 개발하거나 개별 고객 또는 그룹의 특성을 파악할 수 있습니다. 2. 분류 (Classification): 가장 일반적인 의사결정나무의 사용법 중 하나로, 이산형 레이블 또는 클래스로 데이터를 분류합니다. 스팸 이메일 분류, 질병 진단, 고객 이탈 예측 등 다양한 분류 문제에 적용됩니다. 3. 예측 (Prediction): ..
2023. 11. 3.
단축키
내 블로그
내 블로그 - 관리자 홈 전환 |
Q
Q
|
새 글 쓰기 |
W
W
|
블로그 게시글
글 수정 (권한 있는 경우) |
E
E
|
댓글 영역으로 이동 |
C
C
|
모든 영역
이 페이지의 URL 복사 |
S
S
|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.