learning rate1 GPT Playground 하이퍼파라미터 GPT Playground는 OpenAI의 GPT 모델을 시각적으로 탐색하고 실험할 수 있는 인터랙티브 한 웹 기반 도구입니다. 하이퍼파라미터는 모델 학습에 사용되는 여러 매개변수를 의미하며, GPT Playground에서 이들 파라미터를 조정하여 모델의 동작을 변경하고 실험할 수 있습니다. GPT Playground의 주요 하이퍼파라미터: 1. 모델 크기 (Model Size): GPT 모델의 크기는 주로 레이어(layer) 수와 파라미터의 양으로 결정됩니다. 작은 크기의 모델은 더 빠르게 실행되지만 성능이 제한될 수 있습니다. 반면, 큰 모델은 더 많은 파라미터를 가지고 있어 성능이 향상될 수 있지만 학습 및 실행에 더 많은 시간과 계산 리소스를 요구합니다. 2. 배치 사이즈 (Batch Size):.. 2023. 12. 27. 이전 1 다음